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Quantum double structure for Heisenberg-Weyl algebra 
without q-deformation 
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Absbad. In this paper, a new quasi-triangular Hopf algebra is presented as the quantum 
double of the Heisenberg-Weyl algebra without qdefomation. Its universal R-matrix is 
built and the corresponding representation theory is studied with the explicit construction 
for the representations of this quantum double. 

1: Introduction 

Recently, the quantum group t h e o j  associated with the Yang-Baxter equation for a 
nonlinear integrable system has became the focus of attention from both theoretical 
physicists and mathematicians [I] .  As a kernel of this theory, Drinfeld’s quantum 
double construction is a quite powerful tool in constructing the solutions, namely the 
R-matrices, for the quantum Yang-Baxter equation (QYBE) in connection with certain 
algebraic structures, such as quantum algebras [2], quantum super algebras 131, quan- 
tum affie algebras [2], their multiparameter deformations [4] and the quantum doubles 
of the Bore1 subalgebras for universal enveloping algebras (UEA) of classical Lie algebra 
[6]. Some of them usually are so-called q-deformations and similar constructions are 
studied by different authors, for example, in [7]. 

In this paper we will present a different quasi-triangular Hopf algebra that is the 
quantum double of the Heisenberg-Weyl(Hw) algebra based on Drinfeld’s quantum 
double construction. To construct the explicit R-matrices for the QYBE from its universal 
R-matrix of  this quantum double, we study its representation theory and explicitly 
construct its finite and infinite dimensional representations. A six-dimensional example 
of R-matrices for this quantum double is given as an illustration. The studies in this 
paper shows that, like its q-deformation [6-81, the ordinary HW algebmalso realizes a 
so-called quantum group structure, quasi-triangular Hopf algebra associated QYBE. 
This fact shows that the~canonical quantization defined by the HW algebra possibly 
prompts an important role of ‘quantum group structure’ and the QYBE in quantum 
theory. 

I/ Permanent address: Theoretical Physics Division! Nankai InslitUte of Mathematics, Tianjin 30071, People‘s 
Republic of China. 
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2. Quantum doubte of m algebra 

The Heismberg-Weyl algebra (HW) algebra A is an associative algebra generated by 
a, @, E and the unit 1. These generators satisfy the dehing relations 

C-P Sun and M-L Ge 

[a, 4 =E, [E, a] =0= [E, a]. 

T(a)+=T(Z), T(E)=unitmatrixI 

(2.1) 

If we take a speciat representation T such that 

then Z and a can be regarded as the creation and annihilation operators of boson states 
in second quantization. Since the algebra A is the UEA of the HW Lie algebra with basis 
{a, 6, E},  A can be endowed with a well known Hopf algebraic structure 

A(x)=x@ l+l@x,S(x)=-x, E(x)=O (2.2) 

for x=a,  Z, E where the algebraic homomorphisms A, E and the algebraic antihomo- 
morphism S defined only for the generators are naturally extended for the whole algebra. 
According to the PBW theorem, the basis for the algebra A is chosen as 

{X(m,n,s)=ci"d%',m,n,s, EZ+={O, 1,2,. . .}}. 
Now, let us consider the dual Hopf algebra B of A. Suppose b; b and H are the 

dual generators to 6, a and E respectively and then defined by 

(X(m, n, s), 5) = 6,,16,,06,0 

<X(m, n. s), E>= 6".06n,06s,1~ 

( X h ,  n, s), 6) = 6,.06~,16,,0 (2.3) 

Since the algebra A is commutative, its Hopf algebraic dual is Abelian, i.e. the dual 
generators commute each other. Choosing a basis for B 

Y(m, n, s) = (m! n! s!)-'K"'b"H', m, n, s, E Z +  (2.4) 

we prove the following proposition: 

Proposition 1. The equations (2.4) define a dual basis Y(m, n, s)  for B satisfying 

(X(m. n, s), Y(m', n', 8')) = 6mmJn,n.6s3. (2.5) 

Proof According to the Hopf algebraic duality between A and B: 

<a, blb2)=(A~(a), b1@.62>, a 4  bl, bZEB 

<alaZ, b)=<a28al, Adb)), a l ,  aZcA, beB 

(IA, b)=&B(b), bEB (2.6) 

(a. W = E A ( ~ ) .  0c.A 

(SA(a) ,  SB(b)>=<a, b), aE.4 bsB 

where for C=A, B, the operations Ac, EC and Sc are the coproduct, co-unit and anti- 
pode of C, respectively; IC is the unit of C. Without confusion we no longer use 
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the index C to specify Ac, EC and SC. Let G=E, U, E corresponding to F=b; b, H, 
respectively. For G f Z  

(ZGm, Fn) =(A(ZGm), F"-'OF) 

=m<ZG"-', F"-')=m! 6m,6,0 

where we have used 

(G", F " )  = m! 6,,,, 

which follows from 

(G", F")= (A(G"), F?-'@F). 

For FZb; similarly, we have 

(G", 6=Fn)=m!6,,,,6,0. 

Then, we have 

(am&, l?bi)= (A(@'"&), l?@b')=s!l! 6&Yj4 
.~ . and therefore prove equation (2.5). 

It follows from the above proposition that 

W(m,  n, s)OX(k, 1, r), WO)= ( X ( k  1, M ( m ,  n, s), H) 

= 6 ~ , 0 ~ ~ , 0 ~ k , 0 ~ S O ~ ~ ~ , ~ ~ ~ , 0  + 6r,16,0),+ 6m,~6~,0~~.,06k,06/,1~~,0 

namely 

A(H)=H@ l+l@H+&b.  

Similarly, we calculate other operations of the generators for B under A, E and S. 
The results are summarized as follows. 

Proposition 2. The dual Hopf algebra B is generated by &, b and Hand endowed with 
the following Hopf algebraic structure 

A(x) =x@ 1 + l o x  

S(X)=-X, E ( X ) = O , X = & ,  b (2.7) 
A(H)=H@ l + l @ H + & b .  

. 
3. Quantum double and universal R-matrix 

It should he noticed that the dual Hopf algebraic structure of B can also be obtained 
from the formal group theory [8] of Lie algebra in principle where the explicit expres- 
sions of the Baker-Comppell-Hausdorff formula for the HW Lie algebra. In this sense, 
Drinfeld's theory is not a unique approach to obtain the dual Hopf algebraic structure. 
However, it is important that Drinfeld's theory can also provide us with a convenient 
method to 'combine' A and B to form a 'larger' Hopf algebra D containing A and B 



7034 

as subalgebras. The universal R-matrix for Q ~ B E  can be automatically given in this 
construction. 

C-P Sun and M-L Ge 

According to the multiplication formula for the quantum double 

ba=C (aX1), S(bj(1))) (ai3), b,Q))aiWj(2) (3.1) 
U 

where c,(k) (k= 1,2,3; c=a, b) are defined by 

A'(c)=(id@A)A(c)=(A@id)A(c)=E ci(l)@ci(2)@c,(3). 
i 

Using the explicit expressions 

A2(H)=HQ 1 0  l+l@H@ 1+1@ l@H+I@)&@b+&b@l+@ 1@b (3.2) 

we have: 

Proposition 3. The quantum double D is generated by a, Z, b, 6, E, H as an associative 
algebra with the only nonzero commutators 

[a, q=E, [H,  a]=)&, [H, Zl=-b (3.3) 

and as a non-cocommutative Hopf algebra with the structure (2.2) and (2.7). The 
universal R-matrix, a canonical element entwining A and B, is 

R =  Z X(m,n,~)@Y(m,n,s )=exp(ZO)&)  exp(a@b) exp(E@H). (3.4) 
m,n.s-o 

Notice that the proof of the above proposition reduces essentially to proposition 1. 

relations directly 
Using the above commutation relations, we can verify the following quasi-triangular 

&(x) = 5A(x)i  

(A@id)g = 213&3 
^ ^  

(idBA@= R I ~ R I Z  (3.5) 
(E@id)i=I=(id@E)I? 

(S@id)I?=I?-'=(id@S)k 

where 5 is such a permutation that o(x@y) =y@x, x ,  y d .  The equations (3.5) mean 
that the above universal R-matrix satisfies the abstract QYBE 

^ ^  

& ~ f & & = ~ z 3 R n R n  (3.6) .. 
whereRlz=Emam@b,Q 1,R13=&,Um@ lQbm,&=Zm l@a,@b,an_da,andb,are 
the dual bases vectors of A and B, respectively. Here, we simply note R=Em a,Qb,,,. 

4. On representations and realizations of the quantnm double 

In order to obtain the R-matrices for QYBE from the new universal R-matrix (3.9, we 
should consider the representations of the quantum double D. For simplicity we denote 
T(x) by x for a representation Tof  D sometimes as follows. 
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Proposition 4. There does not exist a finite-dimensional irreducible representation of D 
except the trivial representations T for which there at least is one generator s such that 
T(x) = 0. 

Remark that the one dimensional representation is trivial because the Abelian Tis 
a scalar 

T(E ) = [ T(a),  T(d) ]  = 0. 

Proof: Thanks to the Schur lemma, we know that the representatives of the central 
elements E, &and b must be non-zero scalars times a nnit matrix I for a n-dimensional 
irreducible representation, i.e. 

E=Iq#O b=Ig#O 6=If#O q, c, Cccomplex field C. 

However, taking the trace of E, we have 

nq=tr(E)=tr([n, d])=O 

that is q=O. Then, a contradiction appears for the non-trivial representations. 
From this proposition and its proof, we see that the hite-dimensional representation 

of D must be neither irreducible nor a sum of some non-trivially irreducible represen- 
tations. The possible non-trivial finite dimensional representations are only those inde- 
composable ones, the reducible but not completely reducible representations where 
tr(E) =O. For the former we can give a boson realization 

a = c  a=c+ b=-aEC 6 = - P d  
(4.1) 

E= 1 H= ac+gc+ 

in terms of the boson operators c and cc satisfying 

(4.2) + [e, e’] = 1 Ix=xl=x x = c , c  . 

Using the Fock representation of c and e’ 

on the Fock space 

{ln)=(n!)-”2(c+)”10>lc[O)=0.n=0, 1,2,. . .} 

we obtain an infinite irreducible representation of D with explicit matrix elements 

(dlmn= (n+ 1)”28m,n+l, (a)m,n=n”26m.. 

(E)mn=6ms, (b)ms=-a6m,., (&,o=-P6m,n (4.4) 
(H)m,=P(n+ I)’/26m,n+, +anl’Z~m,.6m,n-I. 

In this realization and the corresponding representation, the universal R-matrix 
(3.4) can be expressed as a generator 

(4.5) Rze-PC’ e-ac@ePc++=c- -DnP - e  W P ,  - a ) O W ,  a)  
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for the two-mode coherent state 

(4.6) 

where 

OW, 

is a non-normalized single coherent state operator. 

5. Explicit representations 

Since the quantum Double D E  U(L) where U(L) is the universal enveloping algebra 
of a Lie algebra L with the basis 

{a, li. b,b; Hr E }  

we can construct many representations for the quantum double D as the subquotients 
of LeN. This means that-the representation theory of D is enjoyed by the well known 
one for a nilpotent Lie algebra L. However, in order to obtain the finite dimensional 
R-matrices in m a f r i x f o m ,  we must know the matrix representations of D explicitly. 
According to the above-mentioned general d e ,  we construct them as follows. 

The PBW theorem determines the basis for D 

X [ M ]  =X(m, n, I, r, s, t)  =PZ'H%6"E' 

where m, n, I ,  r, s, &Z+ and M denotes a six-vector M = ( m ,  n, 1, r, s, t )  in a lattice 
vector space Z+6 with the basis 

el=(LO,0,0,0,0) e2=(0, l , O ,  O,O, 0)  

e3=(0,  0, 1,0,0,0) e4=(0,0,0, L O ,  0) 

es=(O, 0,O. 0, 1, 0) es=(O, o,o, o,o, 1). 

An explicit representation of D on the basis X [ M ]  is written explicitly as: 

Proposifion 5. The regular representation of D is 

a X [ M ] = X [ M + e , ]  

Z [ M ]  = X [ M +  -d[M-t'i +%] 

EX[M] =X[M+e6]  

bX[ M ]  = X [ M  + e,] 

&'[MI = X [ M + e S ]  

H X [ M I = X [ M +  e31 + m Y [ M -  e ,  + es] - nX[M-  e2 +e4] .  

(5.1) 
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Proof: Follows from the following equations 

[ii, a“] = -nEa”-’ 

[a, (I“]  =nEri”-‘ 

[H,  a”] =nESa”-’ 

[H,(I”]==-nEbri”-’ 

which are obtained from (3.3) by induction. 
Let I be a left ideal generated by the element H - p ,  i.e. 

(5.2) 

L ( p )  = D ( H - p )  = { x ( H - ~ ) ~ x E D } .  

Because the left ideal I is a left-invariant D-submodule, on tbe quotient space V ( p )  = 
D / I ( p ) :  

u(K)  = 86“b’PE‘ Mod r i p )  

where K= (rn, n, r, s, t),  rn, n, r, s, tcZ+, the regular representation induces an infinite- 
dimensional representation 

au[K] = u [ K + e l ]  

rfu[K] = u[K+e2] -mu[K-el +es] 

Eu[KI=u[K+es] 

bu[K] = u[K+ e,] 

Su[K] = u[K+ e,] 

Hu[K] = pu[K]  + mu[K- el +e.] - nu[K- e2 + e?] 

(5.3) 

where 

el = ( L O ,  O,O, 0) ex= (0, L O ,  0,O) 
e,=(O,O. 1,0,0) e4= (O,O, 0,1,0) 

es=(O, 0, 0, 0,  1). 

Now, let us make a key observation from (5.3) that the sum m + n + r + s +  t for the 
basis vectors u[Kl =u(m, n, r, s, i) do not decrease under the actions of D. This fact 
tells us that the following vectors 

{ u[K]  =u(m, n, r, s, t)lm +n+ r + s+ t a N }  

for a fixed N E Z +  span an invariant subspace V ( p , N ) .  Then, the quotient space 
Qk W =  V @ ) / V k  W :  

Span{v(K)=u[K] Mod V(p, N ) ( m + n + r + s i - t < ’ N -  1)  

is bite dimensional and i ts dimension is 

N-’ (k+4)! d(N)=  1 -. 
k!4! (5.4) 
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If we define 

C-P Sun and M-L Ge 

f f l ( K )  = ff ( N -  1 - (m+n+ r + s +  t))u(k),  k= (m, n, r, s, t )  

where ff(x)= I(x>O) and O(x<O), we can explicitly write out the above Enite-dimen- 
sional representation in the explicit form that is obtained by substituting u[K]  in (5.3) 
by f N ( K ) .  Its lowest non-trivial example is a six-dimensional representation 

a=E1,6 r?= -&,I fE2,6 E=E5,6 

on an ordered basis 
, ,  m , o ,  0.0,O) h(0 ,  L O ,  0,O) f i ( O , O ,  bo ,  0) 

m, o,o, LO) fi@, o,o, 0, 1) .MO> o,o, 020) 

(Eij),= &,,S,,,. 

where Ej,, are the matrix units with the corresponding elements 

One purpose of building a quantum double is to obtain the solutions of the QYBE 
in terms of its universal R-matrix and matrix representations. In order to End the 
solutions of the QYBE associated with the exotic quantum double D, we have studied 
representation theory and construct both finite and infmite-dimensional representations 
of D. In fact, for a given representation Px1 of D :  

T'"': D-+End(V) 

on the linear space V where x is a continuous parameter, we can construct a R-matrix 

R(x, y )  = T'"'@TtJ'(fi) ~. , 
satisfying the QYBE 

R1.2(x, y)Rl,3(x, Z)&.3(Y3 z)=R2,3(Y, Z)Rl,3(x, z)81.2(x, y). (5.6) 
Here, x, y and z appear as the colour parameters similar to the non-additive spectrum 
parameters in QYBE. For example, using the above obtained six-dimensional represen- 
tation, we can construct a 36 x 36- R-matrix 

= ( I + E I , ~ @ E ~ , ~ ) ( ~ + [ - E ~ , I + ~ , ~ I ) ( ~ + E ~ . ~ ~  P C Ei,i+E4,1-~3,2 . 
( 6  i=1 1 

It is pointed out that the higher-dimensional representations can also be obtained 
in the same form. 

6. Generalization and discussion 

To conclude this paper. we give some remarks on our exotic quantum double and its 
relations to the known results and try to extend them for more general Lie algebras. 
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From the construction of the exotic quantum double in this paper, we can see that 
a commutative (Abelian) algebra, e.g. the subalgebra B,~can be endowed with a non- 
commutative Hopf algebraic structure and its quantum dual A and quantum double D 
can be deduced as non-commutative algebras in an inverse process of the construction 
in this paper. Such a process possibly provide us with a scheme of ‘quantization’ from 
commutative object to non-cdmmutative one. An example of this ‘quantization’ was 
given [5] recently. 

It has to be pointed out that there are some difficulties in the further developments 
in constructing the general quantum double associated with arbitrary Lie algebra. When 
one take the subalgebra B to be the whole UEA of an arbitrary Lie algebra, we hardly 
write down the dual basis explicitly and so the construction scheme of this paper can 
not work well. However, the method in this paper is applicable to another nilpotent 
Lie algebra A(n), the universal enveloping algebra of the ( n +  1)-dimensional Hw-Lie 
algebra, whose basis is ai, 5; (i= 1, 2, . . . , n) and E with commutation relations 

[a,, 5J = E  [E, ai] =O=[E, a;]. (6.1) 

Let b;,~& and H be the dual generators for the dual algebra B(n) to a;, 6; and H 
respectively. Then, the method in the last sections leads to a quantum double D(n) with 
the Hopf algebra structure 

A(x)=x@ I + l @ x  S(x) = -x 

€(X) = 0 xcA(n) or x=bi,b; 

A ( H ) = H Q l + l @ H + t  b;@b, 
(6.2) 

,= 1 

and the only non-zero commutators as the multiplication relations 

[a;, Z j ]  = E  [H, a;] =b; [H, Zj] = -bj. (6.3) 

The following intertwiner, the universal R-matrix: 

i= fi exp(lf;@b;) exp(ajObi) exp(E@H) (6.4) 

enjoys the quai-triangular structure. It has to be pointed out that how to apply this 
method to any nilpotent Lie algebra is still an open question. 

In the formal group theory of Lie algebra [SI, the bialgebra structure of the dual 
to the UEA of a classical Lie algebra can be given abstractly in terms of the formal 
group. It is not difficult to further define the antipode for this dual bialgebra. So, in 
this abstract way, the Hopf algebraic structure can be endowed with the dual Hopf 
algebra of the UEA. However, writing out the explicit Hopf algebraic structure, namely, 
the explicit multiplication relations, coproduct, antipode and co-unit for the dual gener- 
ators, completely depends on the explicit evolution of the Baker-Comppell-Hausdorff 
formula for classical Lie algebra, and it is difficult to do this even for a simple case, 
e.g. SU(2). The study in this paper avoids this evaluation so that not only the dual 
Hopf algebraic structure is obtained, but also the corresponding quantum doublethe 
exotic quantum double is built for the Bore1 subalgebra of the UEA of arbitrary classical 
Lie algebra by combining the two subalgebras dual to each other. 

; = I  
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